VXI - информационно-измерительные технологии 
 
 
Практикум инженера Инженерные разработки Материалы и вещества Экология  

Стандарт VXI Что такое стандарт VXI? История стандарта VXI VXI в России Стоимость систем Тенденции рынка Технические средства Шина VXIbus Типы модулей Базовые конфигурации Характеристики VXIbus VXI и PXI Программирование Программные средства LabWindows/CVI LabVIEW VXI & Linux Measurement Studio Области применения Авиация и космос Телекоммуникации Нефть и газ Библиотека Публикации Документация Книги и статьи Кто есть кто Производители Поставщики, интеграторы Ассоциации и альянсы
 


Электрическое поле Земли

Естественное электрическое поле Земли как планеты, связано с процессами, протекающими в нижних слоях атмосферы, в ионосфере, магнитосфере, а так же в ближнем межпланетном пространстве и на Солнце.

Существование электрического поля Земли в атмосфере связано в основном с процессами ионизации воздуха и пространственным разделением возникающих при ионизации положительных и отрицательных электрических зарядов. Ионизация воздуха происходит под действием космических лучей: ультрафиолетового излучения Солнца; излучения радиоактивных веществ, имеющихся на поверхности Земли и в воздухе; электрических разрядов в атмосфере и т.д. Многие атмосферные процессы: конвекция, образование облаков, осадки и другие – приводят к частичному разделению разноименных электрических зарядов и возникновению атмосферных электрических полей. Относительно атмосферы поверхность Земли заряжена отрицательно. Существование электрического поля атмосферы приводит к возникновению токов, разряжающих электрический "конденсатор" Атмосфера – Земля.

В обмене зарядами между поверхностью Земли и атмосферой значительную роль играют осадки. В среднем осадки приносят положительных зарядов в 1,1 ÷ 1,4 раза больше, чем отрицательных. Утечка зарядов их атмосферы восполняется также за счёт токов, связанных с молниями и стеканием зарядов с естественных остроконечных предметов (острий). Баланс электрических зарядов, приносимых на земную поверхность площадью 1 км2 за год, можно характеризовать следующими данными:

Ток проводимости+ 60 к/км2*год
Токи осадков+ 20 к/км2*год
Разряды молний- 20 к/км2*год
Токи с остриёв- 100 к/км2*год
Всего- 40 к/км2*год

На значительной части земной поверхности – над океанами – токи с остриёв исключаются, и здесь будет положительный баланс. Существование отрицательного статического заряда на поверхности Земли (около 5,7 х 105к) говорит о том, что эти токи в среднем сбалансированы.

Электрические поля в ионосфере обусловлены процессами, протекающими как в верхних слоях атмосферы, так и в магнитосфере. Приливные движения воздушных масс, ветры, турбулентность – всё это является источником генерации электрического поля в ионосфере благодаря эффекту гидромагнитного динамо. Примером может служить солнечно – суточная электрическая токовая система, которая вызывает на поверхности Земли суточные вариации магнитного поля. Величина напряженности электрического поля в ионосфере зависит от местоположения точки наблюдения, времени суток, общего состояния магнитосферы и ионосферы, от активности Солнца. Она колеблется от нескольких единиц до десятков мВ/м, а в высокоширотной ионосфере достигает ста и более мВ/м. При этом сила тока доходит до сотен тысяч Ампер.

Одним из непосредственных источников электрического поля в магнитосфере является солнечный ветер. При обтекании магнитосферы солнечным ветром возникает Э.Д.С., которая вызывает электрические токи. Величина напряженности электрического поля в магнитосфере достигает 1 мВ/м. Разность потенциалов поперек полярной шапки составляет 20 ÷ 100 кВ.

В периоды магнитных бурь и полярных сияний электрические поля и токи в магнитосфере и ионосфере испытывают значительные изменения. Помимо квазистатических электрических полей магнитосфере и ионосфере существуют переменные электрические поля, связанные с различного типа плазменными колебаниями. На поверхности Земли эти колебания регистрируются в зависимости от частоты колебаний либо как магнитные пульсации (10-2 – 10 Гц), либо как низкочастотные электромагнитные волны (колебания с частотой 102 – 104 Гц).

Переменное магнитное поле Земли, источники которого локализованы в ионосфере и магнитосфере, индуцирует электрическое поле в земной коре. Напряженность электрического поля в приповерхностном слое коры колеблется в зависимости от места и электрического сопротивления пород в пределах от нескольких единиц до нескольких сотен мВ/км, а во время магнитных бурь усиливается до единиц и даже десятков В/км.

Определенный вклад в электрическое поле Земли вносит контактная разность потенциалов между породами различной электропроводности (термоэлектрический, электрохимический, пьезоэлектрический эффекты). Особую роль при этом играют вулканические и сейсмические процессы.

Электрические поля в морях индуцируются переменным магнитным полем Земли, а также возникают при движении проводящей морской воды (морских волн и течений) в магнитном поле. Плотность электрических токов в морях достигает 10-6 а/м2.

Вопрос об электрическом заряде Земли как источнике электрического поля в межпланетном пространстве окончательно пока не решён. Считается, что Земля как планета электрически нейтральна. Однако эта гипотеза проходит экспериментальную проверку. Экспериментальные измерения, во время космических полетов научно-исследовательских ракет, показывают, что напряженность электрического поля в околоземном межпланетном пространстве колеблется в пределах от десятых долей до нескольких десятков мВ/м.

Магнитное поле Земли

Существование магнитного поля земли связано с геофизическими процессами происходящими в Земле и верхней её атмосфере. Магнитное поле обусловлено действием постоянных источников, расположенных внутри Земли и испытывающих лишь медленные вековые изменения (вариации), и внешних (переменных) источников, расположенных в магнитосфере Земли и ионосфере.

Для объяснения происхождения основного (постоянного) геомагнитного поля существует много различных гипотез, однако современные данные о вековых вариациях и многократных изменениях полярности геомагнитного поля удовлетворительно объясняются только гипотезой о гидромагнитном динамо (ГД). Согласно этой гипотезе, в жидком электропроводящем ядре Земли происходят сложные и интенсивные движения, приводящие к самовозбуждению магнитного поля, аналогичного тому, как происходит генерация тока и магнитного поля в динамо-машине с самовозбуждением. Действие ГД основано на электромагнитной индукции в движущейся среде, которая в своём движении пересекает силовые линии магнитного поля.

Полная напряженность магнитного поля от экватора к полюсу растет с 33,4 до 55,7 А/м (от 0,42 до 0,70 э). Координаты северного магнитного полюса: долгота 101,50° западная долгота, широта 75,70° северная широта; южного магнитного полюса: долгота 140,30° восточная долгота, широта 65,50° южная широта.

Геомагнитное поле имеет различные магнитные аномалии (отклонения от нормального распределения геомагнитного поля), например, Восточно-Сибирскую, Бразильскую и др., которые вызваны неравномерным распределением в земной коре ферромагнитных минералов. Влияние мировых аномалий сказывается до высот ~ 0,5 R3 над поверхностью Земли (R3 – радиус Земли). Магнитное поле Земли простирается до высот ~ 3Rз. Оно испытывает вековые вариации, неодинаковые на всём земном шаре. В местах наиболее интенсивного векового хода вариации достигают 150 g в год (1g = 10-5 э).

Наблюдается также систематический дрейф магнитных аномалий к западу со скоростью около 0,2° в год и изменение величины и направления магнитного момента Земли со скоростью ~ 20γ в год, что заставляет часто проводить мировые магнитные съёмки для уточнения магнитной карты Земли.

Переменное геомагнитное поле возникает при обтекании магнитосферы плазмой солнечного ветра с переменной плотностью и скоростью заряженных частиц, а также прорыва в магнитосферу. Эти процессы вначале приводят к изменению интенсивности систем электрических токов в магнитосфере и ионосфере Земли.

Токовые системы в свою очередь вызывают в околоземном космическом пространстве и на поверхности Земли колебания геомагнитного поля в широком диапазоне частот (от 10-5 до 102 Гц) и амплитуду (от 10-3 до 10-7 э).

В "спокойное" время в низких и средних широтах наблюдаются периодические солнечно-суточные и лунно-суточные магнитные вариации с амплитудой 30 ÷ 70 γ и 1 ÷ 5 γ соответственно. Другие наблюдаемые неправильные колебания геомагнитного поля различной формы и амплитуды называют магнитными возмущениями.

Магнитные возмущения, охватывающие всю Землю и продолжающиеся от одного до нескольких дней, называются мировыми магнитными бурями, во время которых амплитуда может превзойти 1000g. Магнитная буря – одно из проявлений сильных возмущений магнитосферы, возникающих при изменении параметров солнечного ветра, особенно скорости его частиц и нормальной составляющей межпланетного магнитного поля относительно плоскости эклиптики. Сильные возмущения магнитосферы сопровождаются появлением в верхней атмосфере Земли полярных сияний, ионосферных возмущений, рентгеновского и низкочастотного излучений.

  • Главная   • Практикум инженера   • Электрическое поле Земли  


Практикум инженераВиды помех и способы их описанияТиповые сигналы помехи и причины их возникновенияЭлектромагнитные помехи и их классификацияСобственные шумы компонентов электронных схемИсточники индустриальных электромагнитных помехЭлектрическое поле ЗемлиСовместимость ИВК с человеком – операторомСтатическое электричество. Воздействие оператора на электроникуЗаземление - требования нормативовЗаземление приборовПомехи от неидеальности характеристик компонентов электронных схемЗависимость компонентов ИВК от электрического воздействияЭлектромагнитные поля и жизнедеятельность биоорганизмовМетоды помехозащищенности ИВК

Инженерные разработки

Материалы и вещества

Экология

Занимательные истории

 
© Информационно-измерительные технологии VXI, 2000-2016.
Технические и программные средства создания контрольных, управляющих, измерительных комплексов. Автоматизация научных измерений и исследований, промышленная автоматизация. Практическая инженерия, технические инновации.
контакты
карта сайта